A code-based group signature scheme
نویسندگان
چکیده
This work is the extended version of [1] which proposed the first code-based group signature. The new group signature scheme we present here has numerous advantages over all existing post-quantum constructions and even competes (in terms of properties) with pairing based constructions: it allows to add new members during the lifetime of the group (dynamic). Plus, it appears that our scheme might be extended into a traceable signature according to the definition of Kiayias, Tsiounis and Yung [2] (KTY model) while handling membership revocation. Our security is based on a relaxation of the model of Bellare, Shi and Zhang [3] (BSZ model) verifying the properties of anonymity, traceability and non-frameability. The main idea of our scheme consists in building an offset collision of two syndromes associated to two different matrices: a random one which enables to build a random syndrome from a chosen small weight vector; and a trapdoor matrix for the syndrome decoding problem, which permits to find a small weight preimage of the previous random syndrome to which a fixed syndrome is added. These two small weight vectors will constitute the group member’s secret signing key whose knowledge will be proved thanks to a variation of Stern’s authentication protocol. For applications, we consider the case of the code-based CFS signature scheme [4] of Courtois, Finiasz and Sendrier. If one denotes by N the number of group members, CFS leads to signatures and public keys sizes in N √ . Along with this work, we also introduce a new kind of proof of knowledge, Testable weak Zero Knowledge (TwZK), implicitly covered in the short version of this paper [1]. TwZK proofs appear particularly well fitted in the context of group signature schemes: it allows a verifier to test whether a specific witness is used without learning anything more from the proof. Under the Random Oracle Model (ROM), we ensure the security of our scheme by defining the One More Syndrome Decoding problem, a new code-based problem related to the Syndrome Decoding problem [5].
منابع مشابه
An ECC-Based Mutual Authentication Scheme with One Time Signature (OTS) in Advanced Metering Infrastructure
Advanced metering infrastructure (AMI) is a key part of the smart grid; thus, one of the most important concerns is to offer a secure mutual authentication. This study focuses on communication between a smart meter and a server on the utility side. Hence, a mutual authentication mechanism in AMI is presented based on the elliptic curve cryptography (ECC) and one time signature (OTS) consists o...
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کاملThe new protocol blind digital signature based on the discrete logarithm problem on elliptic curve
In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...
متن کاملDouble voter perceptible blind signature based electronic voting protocol
Mu et al. have proposed an electronic voting protocol and claimed that it protects anonymity of voters, detects double voting and authenticates eligible voters. It has been shown that it does not protect voter's privacy and prevent double voting. After that, several schemes have been presented to fulfill these properties. However, many of them suffer from the same weaknesses. In this p...
متن کاملan Efficient Blind Signature Scheme based on Error Correcting Codes
Cryptography based on the theory of error correcting codes and lattices has received a wide attention in the last years. Shor’s algorithm showed that in a world where quantum computers are assumed to exist, number theoretic cryptosystems are insecure. Therefore, it is important to design suitable, provably secure post-quantum signature schemes. Code-based public key cryptography has the charact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016